Data is the currency of your Digital Transformation

This is a scary time for a company. But the state of play creates the potential for mass and creative disruption.
— $1 Billion for Dollar Shave Club: Why Every Company Should Worry @ NYTimes

Every company is a digital company. No longer is it a question of if your product will become digital – as was the case with music, newspapers, TV, movies, etc. – it is a question of how the experience of your product (and your company) changes even if your product isn’t digitized.

eCommerce, digital marketing, social, CRM, and content technology and strategies are critical. You will need to invest in those technologies – but underpinning all of those technologies is data – that data is the currency of your digital transformation.

Continue reading “Data is the currency of your Digital Transformation”

Series – Part 3: Serverless Architecture – a practical implementation: Serverless REST API

In part two of this series I discussed creating a serverless data collection and processing fabric for an IoT deployment. To recap, we’ve now reviewed the local devices and controller/gateway pattern for the security cameras deployed. We’ve also discussed the Amazon Web Services infrastructure deployed to collect, process and catalog the data generated by the security cameras.

In this post we will cover the creation of a serverless REST API.

Continue reading “Series – Part 3: Serverless Architecture – a practical implementation: Serverless REST API”

Series – Part 2: Serverless Architecture – a practical implementation: IoT Device data collection, processing and user interface.

In part one of this series I briefly discussed the purpose of the application to be built and reviewed the IoT local controller & gateway pattern I’ve deployed. To recap, I have a series of IP cameras deployed and configured to send (via FTP) images and videos to a central controller (RaspberryPI 3 Model B). The controller processes those files as they arrive and pushes them to Amazon S3. The code for the controller process can be found on GitHub.

In this post we will move on to the serverless processing of the videos when they arrive in S3.

Continue reading “Series – Part 2: Serverless Architecture – a practical implementation: IoT Device data collection, processing and user interface.”

Series – Part 1: Serverless Architecture – a practical implementation: IoT Device data collection, processing and user interface.

 

reinvent_launch-page_illustration_lambda
AWS Lambda

Serverless architectures are getting a lot of attention lately – and for good reason. I won’t rehash the definition of the architecture because Mike Roberts did a fine (and exhaustive) job over at MartinFowler.com.

However, practical illustrations of patterns and implementations are exceptionally hard to find. This series of posts will attempt to close that gap by providing both the purpose, design and implementation of a complete serverless application on Amazon Web Services.

Part 1 – The setup…

Every application needs a reason to exist – so before we dive into the patterns and implementation we should first discuss the purpose of the application.

Nest wants how much for cloud storage and playback?

I have 14 security cameras deployed, each captures video and still images when motion is detected. These videos and images are stored on premises – but getting them to “the cloud” is a must have – after all if someone breaks in and takes the drive they are stored on all the evidence is gone.

If I were to swap all of the cameras out for Nest cameras cloud storage and playback would cost $2250/year – clearly this can be done cheaper… so…

Continue reading “Series – Part 1: Serverless Architecture – a practical implementation: IoT Device data collection, processing and user interface.”

Key to Big Data Success – Data Driven Culture

I’m not always sure people always know what they mean when they talk about Big Data – and even when they do know, I’m not sure they can contrast this new Big Data thing from Data’s previous incarnation.

So let’s see if we can clear it up.

Prior to big data the amount and content of the data you had access to was limited – in technical terms you had to deal with a limited information domain. Why? Because obtaining and storing data was expensive and, more importantly, most data was locked up in the real world and never entered the digital (binary data living in computational systems) realm. That obviously has changed.

15422638442_e239227dce_o
Photo Credit: Janet McKnight @ Flickr
This flip – from only generating and storing data directly relevant to operating a business to having access to, collecting and storing massive amounts of data which may or may not be relevant to operating a business is the state change.

The first big problem was tooling. The systems and technologies to collect and store data were designed for the relatively small amounts of strictly modeled data relevant to running our business. Moreover, they were designed to strictly control adding to it, because that was expensive. This was the problem we needed to address first – which is why when we talk about Big Data we invariably talk about technologies – Hadoop, MongoDB, Spark, Kafka, Storm, Cassandra…

But, for business leaders this is misleading, because implementing any (or all) of those technologies will not make the business effective in a Big Data context. These technologies will not provide you magical data which supercharges your business. You will not suddenly have insights your competitors do not; you will not – overnight – find the clarity required to dominate your market.

The key is to combine those tools and capabilities with data driven practices and culture.

Let’s start by avoiding the mistake made with Big Data – let’s clearly talk about what has changed and why data driven is different than what came before.

I’ve worked with organizations – from startups to enterprises – that have robust reporting and systems of operational metrics they use to run the business. They review reports and dashboards regularly, perform regular operational reviews focused on those metrics and target resources and budget toward those that are under performing. Invariably they suggest they are already data driven – because they leverage data to run their business.

They are not. They are optimally operating in the pre-Big Data model – where the universe of data was fixed, the metrics long lived and stable and information outside that realm unobtainable – those insights beyond reach.

A Data Driven organization still does those things – metrics, operational reviews, targeted investments based on under performing metrics. But, they also leverage the larger universe of data to openly question the validity of those metrics; they develop processes to evaluate that universe for new metrics and insights; they allow the data to lead them to opportunities and the identification of threats.

This practice almost always feels like a radical shift – and it is. Organizations must shift from the practice of only focusing on the known knows and embrace this new ability to examine and gain insight from the known unknowns and unknown unknowns.

Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – the ones we don’t know we don’t know. And if one looks throughout the history of our country and other free countries, it is the latter category that tend to be the difficult ones.[1]

Rumsfeld’s observation applies equally to businesses.

When these Data Driven processes and practices, extending and augmenting your metrics driven operational practices, become part of the culture the real value of all that data and all those tools can be realized.

 

Polyglot Persistence – Benefits and Barriers

21828243446_136614fc89_o
Photo Credit: Christophe BENOIT

Polyglot persistence is simply the notion that one should leverage multiple data storage technologies chosen based upon the way the data will be used by the application.

In short, use the best tool for the job.

Benefits

  1. Attempting to make a single data store (or database if you prefer) encapsulate all your application contexts breeds complexity. When each context, entity or value object can tune the data store leveraged to the unique requirements of that domain complexity is reduced and feature velocity is increased.
  2. Polyglot enables in data store transformation, materialized views and projections of the data into alternate stores for the purpose of enabling specific application features. Simply put, you can have multiple representations of the same data where and when it is convenient in your application context.
  3. Data store spend is targeted toward the features and contexts in the application which actually require the investment.

Barriers

  1. Joins – perceived complexity due to the inability to create a single “query” joining multiple contexts, entities or value objects.
    1. Understanding the benefits of composition allows us to see this as a false barrier – it is simply an issue of changing from the old way of doing things.
  2. Maintenance cost – expertise and management of multiple data stores adds to the overall cost of operating the application.
    1. In a monolithic data store system extensive effort is put into the “tuning” of the data store. This is always due to either the massive complexity of data stores that try to do everything or the need to make a single data store solve too many disparate persistence models. When we use data stores which are “natural” to the domain, context or entity this overhead is massively reduced.
  3. Developer Complexity – finding and staffing developers that can work with multiple data stores is impossible.
    1. When transforming from a monolithic data store architecture this will absolutely be problematic. However, as your polyglot practice matures this issue will diminish with time.

All of the above relies on having a solid domain driven design and flexible, adaptable architecture for your application.

“Only doing what we can execute now” is a terrible strategy – a prescription for unsticking your engineering team.

16364058151_f245ce9b9a_k_d
Photo Credit: Radarsmum67 on Flickr

I engage with a lot of engineering teams (and leaders) that are stuck. They know full well they need to do something to enable thier product, service or business team – but they can’t get started.

In almost every case I find a culture of resistance – which can be best summarized as:

 

 

I don’t think we can execute that – I mean, we’ve never done it before and have no idea how to do it.

 

I sympathize – I really do – but only signing up to execute what the team already knows how to do is accepting defeat. Yes, I understand, you’ve never used a document database; nope – you’ve never used a horizontally scalable messaging infrastructure; true, you don’t have any experts in WebRTC; yes, I get that you don’t even know what technology to think about to solve this problem.

My prescription in these cases is simple:

  1. Figure out the smallest valuable thing you can implement – and implement it.
    • If you can’t decompose the feature/problem find someone who can help you do it – they all decompose.
  2. The people you have are smart – assume they will figure it out. Your confidence in them generates their confidence in themselves.
    • If they can’t you have to up-skill your team! Get outside help in the interim.
  3. Be relentlessly unafraid to fail!
    • First, you will even if you are afraid – unless, of course, you just stay stuck and do nothing. Second, failure is an outcome – and outcomes are good – we can learn from all of them.
  4. Go back to #1 and repeat.

Two more quick points:

  1. You don’t have to be formal leader (engineering manager) to do any of the 4 above. However, if you are and you don’t support these activities your team will stay stuck.
  2. Be 100% transparent with your stakeholders (product manager, business partner, engineering leadership, etc) about where you are on your journey from stuck to “we got this”.

The consistent application of this prescription – in my experience – leads to teams that rarely get stuck. More importantly you have created the foundation any engineering team needs to become high functioning and deliver consistently for the business.

Big Data – Storage Isn’t Enough

We should have seen it coming. When we stopped even thinking about how we store data for our applications, when we just assumed some DBA would give us a database – and some SysAdmin would give us a file system. Sure, we can talk about W-SAN (what WLAN was to the LAN, but for storage) solutions like Amazon S3 and Rackspace Cloud – but they didn’t fundamentally change anything.

Big Data forces us to re-think storage completely. Not just structured/unstructured, relational/non-relational, ACID compliance or not. It forces us – at the application level – to rethink the current model exemplified by

I’m storing this because I may need it again in the future.

Where storage means physical, state aware object persistence and future means anywhere between now and the end of time.

Data Persistance – A Systemic Approach to Big Data for Applications

What Big Data applications require is a systemic approach to data. Instead of applications approaching data as only a set of if/then operations designed to determine what (if any) CRUD operations to perform it demands that applications (or supporting Data Persistence Layers) understand the nature of the data persistence required.

This is a level of complexity developers have been trained to ignore. The CRUD model itself explicitly excludes any dimensionally – or meta information about the persistence. It is all or nothing.

Data Persistance is primarily the idea that data isn’t just stored – it is stored for a specific purpose which is relevant within a specific time slice. These time slices are entirely analogous to those discussed in Preemption. Essentially, any sufficiently large real time Big Data system is simply a loosely aggregated computer system in which any data object may generate multiple tasks each of which have a specific priority.

For example, in a geo location game (Foursquare) the appearance of a new checkin requires multiple tasks which are prioritized based on their purpose, for example:

  1. Store the checkin to distribute to “friends” (real-time)
  2. Store the checking association with the venue (real-time)
  3. Analyze nearby “friends” (real-time)
  4. Determine any game mechanics, badges, awards, etc
  5. Store the checkin on the user’s activity
  6. Store the checkin object

NOTE: Many developers will look at this list above and ask: “Why not a database?” While a traditional database may suffice for a relatively low volume system (5k users, 20k checkins per day) it would not be sufficient at Big Data scale (as discussed here).

This Data Persistence solution is comprised of four vertical persistence types:

Big Data, Real Time Data Persistance

Transitory

Transitory persistance is for data persisted only long enough to perform some specific unit of work. Once the unit of work is completed the data is no longer required and can be expunged. For example: Notifying my friends (that want to be notified) that I’m at home.

Generally speaking (and this can vary widely by use case) Transitory persistence must be atomic, extremely fast and fault tolerant.

Volatile

Volatile persistance is for data that is useful but can be lost and rebuilt at any time. Object caching (how memcached is predominantly used) is one type Volatile persistence, but does not describe the entire domain. Other examples of volatile data include process orchestration data, data used to calculate decay for API Rate Limits, data arrival patterns (x/second over the last 30 seconds), etc.

The most important factor for Volatile data persistence is that the data can be rebuilt from normal operations or from long term data storage if it is not found in the Volatile dataset.

Generally speaking, data is stored in Volatile persistence because is offers superior performance, but limited dataset size.

ACID

Relational databases and atomicity, consistency, isolation and durability (ACID) are not obsolete. It is important for specific types of operations – done for specific purposes to maintain transactional compliance and ensure the entire transaction either succeeds in an atomic way, or fails. Examples of this include eCommerce transactions, Account Signup, Billing Information updates, etc.

Generally speaking, this data complies with the old rules of data. It is created/updated slowly over any given time slice, it is read periodically, there is little need to publish the information across a large group of subscribers, etc.

Amorphous

Amorphous persistence is the new kid on the block. NoSQL solutions fit nicely here. This non-volatile storage is amorphous in that the content (think property, not property value) of any object can change at any time. There is no schema, table structure or enforced relationship model. I think of this data persistence model as raw object storage, derived object storage and the transformed data that forms the basis of what Jeff Jones refers to as Counting Systems. Additionally, these systems store data in application consumable objects – with those objects being created on the way in.

Systems in this layer are generally highly scalable, fault tolerant, distributed systems with enhanced write efficiency. They offer the ability to perform the high volume writes required in real time Big Data systems without significant loss of read performance.

What Does All This Mean?

Most notably it means, that after years of obfuscating the underlying data storage from developers, we now need to re-engage application developers in the data storage conversation. No longer can a DBA define the most elegant data model based on the “I’m storing this because I may need it again in the future.” model and expect it to function in the context of a real time Big Data application.

We will hear a chorus of voices who will attack these dis-aggregated data persistence models based on complexity or the CAP Theorem or on the standard “the old way is the best way” defense of ACID and the RDBMS for everything. But all of this strikes me as a perfect illustration of what Henry Ford said:

If I had asked customers what they wanted, they would have told me they wanted a faster horse